What Sets the Surface Eddy Mass Flux in the Southern Ocean?

نویسنده

  • S. S. DRIJFHOUT
چکیده

The Ocean Circulation and Climate Advanced Modelling (OCCAM) global, eddy-permitting ocean general circulation model has been used to investigate the surface eddy mass flux in the Southern Ocean. The isopycnal eddy mass flux in the surface layer is almost uniformly poleward and scales well with the local Ekman transport. This seems at odds with other models and observations suggesting topographic localization of the eddy fluxes with locally, large rotational components. Integrated over the thermocline depth the eddy fluxes do show such topographic localization. The surface eddy mass flux is mainly a consequence of the intermittent deepening of the mixed layer with the seasonal cycle, which redistributes the Ekman transport over the stack of layers that eventually become ventilated. Baroclinic instability gives rise to much smaller eddy-induced transports. Independent of the framework in which the residual mean flow is analyzed (isopycnal or geometric), the eddy-induced transport that opposes the wind-driven Ekman flow only partially compensates the Deacon cell. The associated overturning cell is about 5 Sv (where 1 Sv 10 m s ), responsible for a cancellation of the Deacon cell of 30%. In geometric coordinates, a strong signature (14 Sv) of the Deacon cell remains for the residual mean flow. Only after transformation to density coordinates is a further reduction with 10 Sv obtained. Zonal tilting of isopycnals makes along-isopycnal recirculations appear as vertical overturning cells in geometric coordinates. These cells disappear in the isopycnal framework without any eddy-induced transport being involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-decadal trends in the advection and mixing of natural carbon in the Southern Ocean

[1] Multi-decadal trends in the advection, mixing, and airsea flux of natural carbon dioxide (CO2) in the Southern Ocean are investigated using output from a hindcast simulation of a non-eddy-resolving ocean model. Particular emphasis is placed on the model’s improved eddy-induced advection parameterization. From 1958 to 2007, the model predicts a significant increase in the outgassing of natur...

متن کامل

Southern Ocean transformation in a coupled model with and without eddy mass fluxes

A coupled air–sea general circulation model is used to simulate the global circulation. Different parameterizations of lateral mixing in the ocean by eddies, horizontal, isopycnal, and isopycnal plus eddy advective flux, are compared from the perspective of water mass transformation in the Southern Ocean. The different mixing physics imply different buoyancy equilibria in the surface mixed laye...

متن کامل

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing

The authors assess the role of time-dependent eddy variability in the Antarctic Circumpolar Current (ACC) in influencing warming of the Southern Ocean. For this, an eddy-resolving quasigeostrophic model of the wind-driven circulation is used, and the response of circumpolar transport, eddy kinetic energy, and eddy heat transport to changes in winds is quantified. On interannual time scales, the...

متن کامل

Evidence for deep eddy mixing in the Southern Ocean

Satellite altimetric observations of the ocean reveal surface pressure patterns in the core of the Antarctic Circumpolar Current (ACC) that propagate downstream (eastward) but slower than the mean surface current by about 25%. We argue that these observations are suggestive of baroclinically unstable waves that have a steering level at a depth of about 1 km. Detailed linear stability calculatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005